

VAST Non-Real-Time Modeling

Larry Meyn
Shon Grabbe
Shawn Engelland
Terran Melconian

Outline of Presentation

- Non-Real-Time Modeling Needs
- Current Research
 - ACES
 - Other Non-Real-Time Modeling Research
- Highlight Presentations
 - Recent Developments in FACET
 Shon Grabbe
 - North Texas (NTX) Research Station Capabilities
 Shawn Engelland
 - MIT Extensible Air Network Simulation (MEANS)
 Terran Melconian

Non-Real-Time Modeling Needs

Modeling Requirements

- Evaluation Criteria
 Capacity, delay, safety, economics, environment, etc.
- Fidelity Requirements
 Spatial, temporal, functional, discrete vs. continuous, etc.
- Coverage Requirements
 Regional vs. national, stochastic & scenario variations, etc.

Data Requirements

- Model Data
 Sector geometry, aircraft performance, schedules, etc.
- Validation Data
 Flight plans, weather, track data, TFM actions, etc.

The Modeling Spectrum

- Modeling is a trade-off between coverage & fidelity
- Model choice is based on:
 - Concept development stage
 - Type of evaluation, i.e. capacity, safety, cost, interactions, etc.
- Comprehensive concept development and evaluation will require the use of several different models
- ACES is intended to fill a critical modeling role
- One modeling tool cannot be used for all evaluations

Current Research

- Airspace Concepts Evaluation System (ACES)
 Development
 - Our principal focus
 - Targeted toward modeling a large, complex NAS system with strong interaction between agents
- Other Non-Real-Time Modeling Efforts
 - Addressing the need for a spectrum of models
 - Leveraging other model development efforts
 - Identifying and developing models for inclusion in ACES
 - Addressing the need for model validation

Airspace Concepts Evaluation System

- Modular design will allow simulations to be tailored to meet specific research needs for scope and fidelity.
- HLA architecture will allow incorporation of legacy models, facilitate the reuse of models in other systems and allow for future integration with other HLA systems.
- Designed to model the interactions of NAS agents that can lead to non-linear system behavior.
- Forsakes the short-term benefits of augmenting legacy simulations in order to develop a modeling tool capable of evaluating a wide range of future ATM concepts.

A long-term commitment to provide a flexible, scalable, standardsbased modeling tool for evaluating ATM concepts.

Reference: Sweet, D. N., Manikonda, V., Aronson, J., Roth, K. and Blake, M., "Fast-Time Simulation System for Analysis of Advanced Air Transportation Concepts," AIAA 2002-4593, Aug. 2002.

Other Non-Real-Time Modeling Efforts

- Cognitive Human Performance Modeling
 - Human/team performance model enhancements in APEX
 - Modeling of the Advanced Airspace Concept (NARI & SJSU)
- Stochastic Simulation
 - Terminal, weather and TFM enhancements in MEANS (MIT)
 - Development of probabilistic and stochastic models (ARC)
- Environmental Models
 - Noise, emissions & wake vortex (ARC)
- Validation of new and existing airspace models
 - Selection of datasets for a typical day (Metron Inc.)
 - Identification of critical parameters for model validation (GMU)

References:

Meyn, L., "Probabilistic Methods for Air Traffic Demand Forecasting," AIAA 2002-4766, Aug. 2002.

Mueller, E. R. and Chatterji, G. B., "Analysis of Aircraft Arrival and Departure Delay Characteristics," AIAA 2002-5866, Oct. 2002.

Roy, S., Sridar, B. and Verghese, G. C., "An Aggregate Dynamic Stochastic Model for an Air Traffic System," To be published.

Highlight Presentations

- Recent Developments in FACET Shon Grabbe
- North Texas (NTX) Research Station Capabilities
 Shawn Engelland
- MIT Extensible Air Network Simulation (MEANS)
 Terran Melconian

